Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 848
Filtrar
1.
Lancet Infect Dis ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38663423

RESUMO

BACKGROUND: Growing evidence suggests that symptoms associated with post-COVID-19 condition (also known as long COVID) can affect multiple organs and systems in the human body, but their association with viral persistence is not clear. The aim of this study was to investigate the persistence of SARS-CoV-2 in diverse tissues at three timepoints following recovery from mild COVID-19, as well as its association with long COVID symptoms. METHODS: This single-centre, cross-sectional cohort study was done at China-Japan Friendship Hospital in Beijing, China, following the omicron wave of COVID-19 in December, 2022. Individuals with mild COVID-19 confirmed by PCR or a lateral flow test scheduled to undergo gastroscopy, surgery, or chemotherapy, or scheduled for treatment in hospital for other reasons, at 1 month, 2 months, or 4 months after infection were enrolled in this study. Residual surgical samples, gastroscopy samples, and blood samples were collected approximately 1 month (18-33 days), 2 months (55-84 days), or 4 months (115-134 days) after infection. SARS-CoV-2 was detected by digital droplet PCR and further confirmed through RNA in-situ hybridisation, immunofluorescence, and immunohistochemistry. Telephone follow-up was done at 4 months post-infection to assess the association between the persistence of SARS-CoV-2 RNA and long COVID symptoms. FINDINGS: Between Jan 3 and April 28, 2023, 317 tissue samples were collected from 225 patients, including 201 residual surgical specimens, 59 gastroscopy samples, and 57 blood component samples. Viral RNA was detected in 16 (30%) of 53 solid tissue samples collected at 1 month, 38 (27%) of 141 collected at 2 months, and seven (11%) of 66 collected at 4 months. Viral RNA was distributed across ten different types of solid tissues, including liver, kidney, stomach, intestine, brain, blood vessel, lung, breast, skin, and thyroid. Additionally, subgenomic RNA was detected in 26 (43%) of 61 solid tissue samples tested for subgenomic RNA that also tested positive for viral RNA. At 2 months after infection, viral RNA was detected in the plasma of three (33%), granulocytes of one (11%), and peripheral blood mononuclear cells of two (22%) of nine patients who were immunocompromised, but in none of these blood compartments in ten patients who were immunocompetent. Among 213 patients who completed the telephone questionnaire, 72 (34%) reported at least one long COVID symptom, with fatigue (21%, 44 of 213) being the most frequent symptom. Detection of viral RNA in recovered patients was significantly associated with the development of long COVID symptoms (odds ratio 5·17, 95% CI 2·64-10·13, p<0·0001). Patients with higher virus copy numbers had a higher likelihood of developing long COVID symptoms. INTERPRETATION: Our findings suggest that residual SARS-CoV-2 can persist in patients who have recovered from mild COVID-19 and that there is a significant association between viral persistence and long COVID symptoms. Further research is needed to verify a mechanistic link and identify potential targets to improve long COVID symptoms. FUNDING: National Natural Science Foundation of China, National Key R&D Program of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and New Cornerstone Science Foundation. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.

2.
Anal Methods ; 16(16): 2456-2463, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38591267

RESUMO

An elevated level of homocysteine (Hcy) in serum is closely related to the development of various diseases. Therefore, homocysteine has been widely employed as a biomarker in medical diagnosis and the on-site detection of homocysteine is highly desired. In this study, a truncated highly specific aptamer for homocysteine was screened and used to design a lateral flow strip (LFS) for the detection of homocysteine. The aptamer was derived from a previously reported sequence. Based on the result of molecular docking, the original sequence was subjected to truncation, resulting in a reduction of the length from 66 nt to 55 nt. Based on the truncated aptamer, the LFS was designed for the detection of homocysteine. In the presence of homocysteine, the aptamer selectively binds to it, releasing cDNA from the aptamer/cDNA duplex. This allows cDNA to bind to the capture probe immobilized on the T zone of the strip, resulting in a red signal on the T zone from gold nanoparticles (AuNPs). The strip enables the visual detection of homocysteine in 5 min. Quantitative detection can be facilitated with the aid of ImageJ software. In this mode, the linear detection range for homocysteine is within 5-50 µM, with a detection limit of 4.18 µM. The strip has been effectively utilized for the detection of homocysteine in human serum. Consequently, the combination of the truncated aptamer and the strip offers a method that is sensitive, quick, and economical for the on-site detection of homocysteine.


Assuntos
Aptâmeros de Nucleotídeos , Ouro , Homocisteína , Nanopartículas Metálicas , Homocisteína/sangue , Homocisteína/química , Homocisteína/análise , Aptâmeros de Nucleotídeos/química , Humanos , Ouro/química , Nanopartículas Metálicas/química , Limite de Detecção , Técnicas Biossensoriais/métodos , Fitas Reagentes/química , Simulação de Acoplamento Molecular
3.
Anal Bioanal Chem ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630279

RESUMO

The point-of-care testing (POCT) of miRNA has significant application in medical diagnosis, yet presents challenges due to their characteristics of high homology, low abundance, and short length, which hinders the achievement of quick detection with high specificity and sensitivity. In this study, a lateral flow assay based on the CRISPR/Cas13a system and MnO2 nanozyme was developed for highly sensitive detection of microRNA-21 (miR-21). The CRISPR/Cas13a cleavage system exhibits the ability to recognize the specific oligonucleotide sequence, where two-base mismatches significantly impact the cleavage activity of the Cas13a. Upon binding of the target to crRNA, the cleavage activity of Cas13a is activated, resulting in the unlocking of the sequence and initiating strand displacement, thereby enabling signal amplification to produce a new sequence P1. When applying the reaction solution to the lateral flow test strip, P1 mediates the capture of MnO2 nanosheets (MnO2 NSs) on the T zone, which catalyzes the oxidation of the pre-immobilized colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) on the T zone and generates the blue-green product (ox-TMB). The change in gray value is directly proportional to the concentration of miR-21, allowing for qualitative detection through visual inspection and quantitative measurement using ImageJ software. This method achieves the detection of miR-21 within a rapid 10-min timeframe, and the limit of detection (LOD) is 0.33 pM. With the advantages of high specificity, simplicity, and sensitivity, the lateral flow test strip and the design strategy hold great potential for the early diagnosis of related diseases.

4.
Acta Pharmacol Sin ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565961

RESUMO

Angiogenesis plays a critical role in many pathological processes, including irreversible blindness in eye diseases such as retinopathy of prematurity. Endothelial mitochondria are dynamic organelles that undergo constant fusion and fission and are critical signalling hubs that modulate angiogenesis by coordinating reactive oxygen species (ROS) production and calcium signalling and metabolism. In this study, we investigated the role of mitochondrial dynamics in pathological retinal angiogenesis. We showed that treatment with vascular endothelial growth factor (VEGF; 20 ng/ml) induced mitochondrial fission in HUVECs by promoting the phosphorylation of dynamin-related protein 1 (DRP1). DRP1 knockdown or pretreatment with the DRP1 inhibitor Mdivi-1 (5 µM) blocked VEGF-induced cell migration, proliferation, and tube formation in HUVECs. We demonstrated that VEGF treatment increased mitochondrial ROS production in HUVECs, which was necessary for HIF-1α-dependent glycolysis, as well as proliferation, migration, and tube formation, and the inhibition of mitochondrial fission prevented VEGF-induced mitochondrial ROS production. In an oxygen-induced retinopathy (OIR) mouse model, we found that active DRP1 was highly expressed in endothelial cells in neovascular tufts. The administration of Mdivi-1 (10 mg·kg-1·d-1, i.p.) for three days from postnatal day (P) 13 until P15 significantly alleviated pathological angiogenesis in the retina. Our results suggest that targeting mitochondrial fission may be a therapeutic strategy for proliferative retinopathies and other diseases that are dependent on pathological angiogenesis.

5.
Clin Cosmet Investig Dermatol ; 17: 791-804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616888

RESUMO

Background: Existing research links oxidative stress and inflammation to hair loss. Salvianolic acid B (SAB) is known for its anti-oxidative, anti-inflammatory, and other beneficial pharmacological properties. Objective: To assess the efficacy of SAB in modulating hair growth. Methods: In vivo experiments were conducted using C57BL/6 mice to evaluate the effects of SAB on hair and skin parameters. The study involved ex vivo analysis of human hair follicles (HFs) for hair shaft length and hair growth cycle assessment. In vitro, human dermal papilla cells (hDPCs) were cultured with SAB, and their proliferation, protection against H2O2-induced oxidative damage, and gene/protein expression alterations were examined using various analytical techniques, including Real-Time Cell Analysis (RTCA), DCFH-DA Assay, RNA-seq, and KEGG pathway analysis. Results: SAB treatment in mice significantly improved hair growth and vascularization by day 21. In human HFs, SAB extended hair shaft length and delayed the transition to the catagen phase. SAB-treated hDPCs showed a notable decrease in the expression of oxidation-antioxidation-related genes and proteins, including reduced phosphorylation levels of ERK and p38. Conclusion: The study indicates that SAB promotes hDPC proliferation and offers protection against oxidative stress, highlighting its potential as a therapeutic agent for enhancing hair growth and treating hair loss.

6.
Adv Drug Deliv Rev ; 209: 115304, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599495

RESUMO

The lymphatic system has garnered significant attention in drug delivery research due to the advantages it offers, such as enhancing systemic exposure and enabling lymph node targeting for nanomedicines via the lymphatic delivery route. The journey of drug carriers involves transport from the administration site to the lymphatic vessels, traversing the lymph before entering the bloodstream or targeting specific lymph nodes. However, the anatomical and physiological barriers of the lymphatic system play a pivotal role in influencing the behavior and efficiency of carriers. To expedite research and subsequent clinical translation, this review begins by introducing the composition and classification of the lymphatic system. Subsequently, we explore the routes and mechanisms through which nanoparticles enter lymphatic vessels and lymph nodes. The review further delves into the interactions between nanomedicine and body fluids at the administration site or within lymphatic vessels. Finally, we provide a comprehensive overview of recent advancements in lymphatic delivery systems, addressing the challenges and opportunities inherent in current systems for delivering macromolecules and vaccines.

7.
New Phytol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666323

RESUMO

The metabolism of massively accumulated chlorogenic acid is crucial for the successful germination of purple coneflower (Echinacea purpurea (L.) Menoch). A serine carboxypeptidase-like (SCPL) acyltransferase (chicoric acid synthase, CAS) utilizes chlorogenic acid to produce chicoric acid during germination. However, it seems that the generation of chicoric acid lags behind the decrease in chlorogenic acid, suggesting an earlier route of chlorogenic acid metabolism. We discovered another chlorogenic acid metabolic product, 3,5-dicaffeoylquinic acid, which is produced before chicoric acid, filling the lag phase. Then, we identified two additional typical clade IA SCPL acyltransferases, named chlorogenic acid condensing enzymes (CCEs), that catalyze the biosynthesis of 3,5-dicaffeoylquinic acid from chlorogenic acid with different kinetic characteristics. Chlorogenic acid inhibits radicle elongation in a dose-dependent manner, explaining the potential biological role of SCPL acyltransferases-mediated continuous chlorogenic acid metabolism during germination. Both CCE1 and CCE2 are highly conserved among Echinacea species, supporting the observed metabolism of chlorogenic acid to 3,5-dicaffeoylquinic acid in two Echinacea species without chicoric acid accumulation. The discovery of SCPL acyltransferase involved in the biosynthesis of 3,5-dicaffeoylquinic acid suggests convergent evolution. Our research clarifies the metabolism strategy of chlorogenic acid in Echinacea species and provides more insight into plant metabolism.

8.
J Biol Chem ; : 107288, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636662

RESUMO

HCN channels are important for regulating heart rhythm and nerve activity and have been studied as potential drug targets for treating depression, arrhythmia, nerve pain and epilepsy.Despite possessing unique pharmacological properties, HCN channels share common characteristics in that they are activated by hyperpolarization and modulated by cAMP and other membrane lipids. However, the mechanisms of how these ligands bind and modulate HCN channels are unclear. In this study, we solved structures of full-length human HCN3 using cryo-EM and captured two different states, including a state without any ligand bound and a state with cAMP bound. Our structures reveal the novel binding sites for cholesteryl hemisuccinate in apo-state and show how cholesteryl hemisuccinate and cAMP binding cause conformational changes in different states. These findings explain how these small modulators are sensed in mammals at the molecular level.The results of our study could help design more potent and specific compounds to influence HCN channel activity and offer new therapeutic possibilities for diseases that lack effective treatment.

9.
J Diabetes ; 16(4): e13543, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584150

RESUMO

OBJECTIVE: To summarize the clinical characteristics and imaging manifestations of patients with nonketotic hyperglycemic hemichorea (NH-HC) and to explore the possible pathogenesis, diagnosis. and treatment of the disease in order to improve the understanding of this disease and avoid misdiagnosis. METHODS: Retrospective analysis was performed on the case data of five patients with NH-HC admitted to our hospital in recent years. The patients were treated in the department of endocrinology, department of neurology, and department of neurosurgery in our hospital, respectively. Meanwhile, relevant literatures were consulted for further learning. RESULTS: NH-HC is usually presented as a triad of nonketotic hyperglycemia, lateral chorea, and typical imaging manifestations of head magnetic resonance imaging or computed tomography, but the clinical manifestations are not the same, and imaging features may also be different, presenting a diversified trend in clinical practice. All five patients were given glucose-lowering drugs and improved with or without combination of drugs to control symptoms of chorea. CONCLUSION: NH-HC is a rare complication of diabetes, characterized by hyperglycemia and hemichorea. How to identify the extreme situation and make fast judgment is a top priority. Timely and correct control of blood glucose is the key to the treatment, and when necessary, application of dopamine receptor antagonists in patients with combination therapy can accelerate improvement of the clinical symptoms. The prognosis of NH-HC is good, the clinician should strengthen comprehensive understanding of this disease to avoid missed diagnosis or misdiagnosis and enable patients to get more timely and effective treatment.


Assuntos
Coreia , Diabetes Mellitus , Hiperglicemia , Humanos , Coreia/diagnóstico por imagem , Coreia/etiologia , Coreia/tratamento farmacológico , Estudos Retrospectivos , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Imageamento por Ressonância Magnética/efeitos adversos
10.
Open Life Sci ; 19(1): 20220834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465343

RESUMO

Parkinson's disease (PD) is a ubiquitous brain cell degeneration disease and presents a significant therapeutic challenge. By injecting 6-hydroxydopamine (6-OHDA) into the left medial forebrain bundle, rats were made to exhibit PD-like symptoms and treated by intranasal administration of a low-dose (2 × 105) or high-dose (1 × 106) human neural stem cells (hNSCs). Apomorphine-induced rotation test, stepping test, and open field test were implemented to evaluate the motor behavior and high-performance liquid chromatography was carried out to detect dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin, and 5-hydroxyindole-3-acetic acid in the striatum of rats. Animals injected with 6-OHDA showed significant motor function deficits and damaged dopaminergic system compared to the control group, which can be restored by hNSCs treatment. Treatment with hNSCs significantly increased the tyrosine hydroxylase-immunoreactive cell count in the substantia nigra of PD animals. Moreover, the levels of neurotransmitters exhibited a significant decline in the striatum tissue of animals injected with 6-OHDA when compared to that of the control group. However, transplantation of hNSCs significantly elevated the concentration of DA and DOPAC in the injured side of the striatum. Our study offered experimental evidence to support prospects of hNSCs for clinical application as a cell-based therapy for PD.

11.
Front Plant Sci ; 15: 1356224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469331

RESUMO

Introduction: The incorporation of green manures substantially enhances the conversion of external phosphorus (P) fertilizers and soil-reserved P into forms readily available to plants. The study aims to evaluate the influence of green manure additions on soil phosphorus dynamics and citrus growth, considering different green manure species and initial soil phosphorus levels. Additionally, the research seeks to elucidate the microbiological mechanisms underlying the observed effects. Methods: A citrus pot experiment was conducted under both P-surplus (1.50 g·P·kg-1) and P-deficient (0.17 g·P·kg-1) soils with incorporating legume (Leg), non-legume (Non-Leg) or no green manure residues (CK), and 18O-P labeled KH2PO4 (0.5 g, containing 80‰ δ18Op) was additionally introduced to trace the turnover characteristics of chemical P fertilizer mediated by soil microorganisms. Results and discussion: In P-surplus soil, compared with the CK treatment, the Leg treatment significantly increased soil H2O-Pi (13.6%), NaHCO3-Po (8.9%), NaOH-Pi (9.5%) and NaOH-Po (30.0%) content. It also promoted rapid turnover of P sources into H2O-Pi and NaHCO3-Pi pools by enhancing the phoC (576.6%) gene abundance. In contrast, the Non-Leg treatment significantly augmented soil H2O-Pi (9.2%) and NaHCO3-Po (8.5%) content, facilitating the turnover of P sources into NaHCO3-Pi pools. Under P-deficient soil conditions, compared with the CK treatment, the Leg treatment notably raised soil H2O-Pi (150.0%), NaHCO3-Pi (66.3%), NaHCO3-Po (34.8%) and NaOH-Pi (59.0%) content, contributing to the transfer of P sources into NaHCO3-Pi and NaOH-Pi pools. This effect was achieved through elevated ALP (33.8%) and ACP (12.9%) activities and increased pqqC (48.1%), phoC (42.9%), phoD (21.7%), and bpp (27.4%) gene abundances. The Non-Leg treatment, on the other hand, led to significant increases in soil NaHCO3-Pi (299.0%) and NaHCO3-Po (132.6%) content, thereby facilitating the turnover of P sources into NaHCO3-Pi and NaOH-Pi pools, except for the phoC gene abundance. Both Leg and Non-Leg treatments significantly improved citrus growth (7.3-20.0%) and P uptake (15.4-42.1%) in P-deficient soil but yielded no substantial effects in P-surplus soil. In summary, introducing green manure crops, particularly legume green manure, emerges as a valuable approach to enhance soil P availability and foster fruit tree growth in orchard production.

12.
Bioorg Chem ; 145: 107253, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452588

RESUMO

Phytochemical study on Euphorbia milii, a common ornamental plant, resulted in the identification of thirteen new ent-rosane diterpenoids (1-13), three new ent-atisane diterpenoids (14-16), and a known ent-rosane (17). Their structures were delineated using spectroscopic data, quantum chemical calculations, and X-ray diffraction experiments. Euphomilone F (1) represented a rare ent-rosane-type diterpenoid with a 5/7/6 skeleton. Euphoainoid G (8) was a rare rosane diterpenic acid. Compounds 9 and 10 carried infrequent tetrahydrofuran rings, and compounds 11-13 was 18-nor-ent-rosane diterpenoids. All isolates were evaluated for their inhibitory effects on RANKL-induced osteoclasts. Notably, compounds with aromatic ester groups (2-7) showed promising activities (IC50 < 10 µM), underscoring the significance of acylated A-ring moieties in the ent-rosane skeleton for anti-osteoclastogenesis. Thirteen synthetic derivatives were obtained through esterification of 17. Of these, compound 27 exhibited remarkable improvement, with an IC50 of 0.8 µM, more than a 12-fold increase in potency compared to the parent compound 17 (IC50 > 10 µM). This work presents a series of new ent-rosane diterpenoids with potential antiosteoporosis agents.


Assuntos
Diterpenos , Euphorbia , Osteogênese , Euphorbia/química , Extratos Vegetais/química , Osteoclastos , Diterpenos/farmacologia , Diterpenos/química , Estrutura Molecular
13.
Foods ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38472749

RESUMO

Research on the comprehensive utilization of sour jujube and its beneficial properties to human health has attracted extensive attention. This study aims to conduct a bibliometric analysis of the bioactive profile of sour jujube and future trends in applications. The research advancements within this field from 2000 to 2023 were addressed using the Web of Science database and VOSviewer. Among the 322 results, the most frequent keywords of bioactivity are flavonoids, antioxidants, saponins, insomnia, polyphenols, terpenoids and anti-inflammatory; the most studied parts of sour jujube are seeds, fruits and leaves; the published articles with high citations mainly focus on identification, biological effects and different parts distribution of bioactive compounds. The bioactivity of various parts of sour jujube was reviewed considering their application potential. The seeds, rich in flavonoids, saponins and alkaloids, exhibit strong effects on central nervous system diseases and have been well-developed in pharmacology, healthcare products and functional foods. The pulp has antioxidant properties and is used to develop added-value foods (e.g., juice, vinegar, wine). The leaves can be used to make tea and flowers are good sources of honey; their extracts are rich sources of flavonoids and saponins, which show promising medicinal effects. The branches, roots and bark have healing properties in traditional folk medicine. Overall, this study provides a reference for future applications of sour jujube in food and medicine fields.

14.
Materials (Basel) ; 17(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473496

RESUMO

To address the most significant environmental challenges, the quest for high-performance gas sensing materials is crucial. Among numerous two-dimensional materials, this study investigates the gas-sensitive capabilities of monolayer As, Sb, and Bi materials. To compare the gas detection abilities of these three materials, we employ first-principles calculations to comprehensively study the adsorption behavior of NO and NO2 gas molecules on the material surfaces. The results indicate that monolayer Bi material exhibits reasonable adsorption distances, substantial adsorption energies, and significant charge transfer for both NO and NO2 gases. Therefore, among the materials studied, it demonstrates the best gas detection capability. Furthermore, monolayer As and Sb materials exhibit remarkably high capacities for adsorbing NO and NO2 gas molecules, firmly interacting with the gas molecules. Gas adsorption induces changes in the material's work function, suggesting the potential application of these two materials as catalysts.

15.
Am J Cancer Res ; 14(2): 655-678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455404

RESUMO

Lung cancer stands as the predominant cause of cancer-related mortality globally. Lung adenocarcinoma (LUAD), being the most prevalent subtype, garners extensive attention due to its notable heterogeneity, which significantly influences tumor development and treatment approaches. This research leverages single-cell RNA sequencing (scRNA-seq) datasets to delve into the impact of KRAS/TP53 co-mutation status on LUAD. Moreover, utilizing the TCGA-LUAD dataset, we formulated a novel predictive risk model, comprising seven prognostic genes, through LASSO regression, and subjected it to both internal and external validation sets. The study underscores the profound impact of KRAS/TP53 co-mutational status on the tumor microenvironment (TME) of LUAD. Crucially, KRAS/TP53 co-mutation markedly influences the extent of B cell infiltration and various immune-related pathways within the TME. The newly developed predictive risk model exhibited robust performance across both internal and external validation sets, establishing itself as a viable independent prognostic factor. Additionally, in vitro experiments indicate that MELTF and PLEK2 can modulate the invasion and proliferation of human non-small cell lung cancer cells. In conclusion, we elucidated that KRAS/TP53 co-mutations may modulate TME and patient prognosis by orchestrating B cells and affiliated pathways. Furthermore, we spotlight that MELTF and PLEK2 not only function as prognostic indicators for LUAD, but also lay the foundation for the exploration of innovative therapeutic approaches.

16.
Materials (Basel) ; 17(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541446

RESUMO

Coupling is a ubiquitous phenomenon observed in various systems, which profoundly alters the original oscillation state of resonant systems and leads to the unique optical properties of metasurfaces. In this study, we introduce a terahertz (THz) tunable coupling metasurface characterized by a four-fold rotation (C4) symmetry-breaking structural array achieved through the incorporation of vanadium dioxide (VO2). This disruption of the C4 symmetry results in dynamically controlled electromagnetic interactions and couplings between excitation modes. The coupling between new resonant modes modifies the peak of electromagnetic-induced transparency (EIT) within the C4 symmetric metasurfaces, simulating the mutual interference process between modes. Additionally, breaking the C4 symmetry enhances the mirror asymmetry, and imparts distinct chiral properties in the far-field during the experimental process. This research demonstrates promising applications in diverse fields, including biological monitoring, light modulation, sensing, and nonlinear enhancement.

17.
Materials (Basel) ; 17(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38541498

RESUMO

Nanotechnology-enabled pesticide delivery systems have been widely studied and show great prospects in modern agriculture. Nanodelivery systems not only achieve the controlled release of agrochemicals but also possess many unique characteristics. This study presents the development of a pH-responsive pesticide nanoformulation utilizing hollow mesoporous silica nanoparticles (HMSNs) as a nanocarrier. The nanocarrier was loaded with the photosensitive pesticide prochloraz (Pro) and then combined with ZnO quantum dots (ZnO QDs) through electrostatic interactions. ZnO QDs serve as both the pH-responsive gatekeeper and the enhancer of the pesticide. The results demonstrate that the prepared nanopesticide exhibits high loading efficiency (24.96%) for Pro. Compared with Pro technical, the degradation rate of Pro loaded in HMSNs@Pro@ZnO QDs was reduced by 26.4% after 24 h ultraviolet (UV) exposure, indicating clearly improved photostability. In a weak acidic environment (pH 5.0), the accumulated release of the nanopesticide after 48 h was 2.67-fold higher than that in a neutral environment. This indicates the excellent pH-responsive characteristic of the nanopesticide. The tracking experiments revealed that HMSNs can be absorbed by rice leaves and subsequently transported to other tissues, indicating their potential for effective systemic distribution and targeted delivery. Furthermore, the bioactivity assays confirmed the fungicidal efficacy of the nanopesticide against rice blast disease. Therefore, the constructed nanopesticide holds great prospect in nanoenabled agriculture, offering a novel strategy to enhance pesticide utilization.

18.
Org Lett ; 26(12): 2511-2516, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38506402

RESUMO

This work demonstrates the synthesis of a variety of perfluoroalkyl heterocycles via a visible-light-driven radical-polar crossover cyclization strategy. In this process, single-electron reduction/SNV-type/cyclization sequences follow the radical addition reaction of a diazoester, which differs from the current role of diazoesters as radical precursors/acceptors. This transformation demonstrates excellent functional group compatibility and allows for the modification of many bioactive molecules with diazoesters. Such a reaction could represent a novel approach to the photochemical transformation of diazo compounds.

19.
Front Immunol ; 15: 1344963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482003

RESUMO

Background: Disturbed gut microbiota and associated metabolic dysfunction exist in Psoriasis. Despite the growing use of interleukin-17 inhibitor (anti-IL17) therapy, the effect of anti-IL17 on gut/skin microbiota function is not fully understood in patients with Psoriasis. Objective: Therefore, we explored whether Psoriasis is associated with alterations in selected gut/skin microbiota in a study cohort, and a longitudinal cohort study to reveal the effects of IL-17A inhibitor treatment on gut microbiota in Psoriasis. Methods: In a case-control study, 14 patients with Psoriasis and 10 age, sex and body mass index-matched Healthy Controls were recruited. Longitudinal mapping of the gut microbiome was performed using 16S rRNA gene sequencing. Mouse models were used to further study and validate the interrelationship between the skin microbiome and the gut microbiome in Psoriasis. PICRUST2 was applied to predict the function of the bacterial community. Results: In Psoriasis patients, gut microbiota dysbiosis was present with increased heterogeneity: decreased Bacteroidota and increased Firmicutes as well as Actinobacteriota predominating in Psoriasis. Escherichia-Shigella enrichment was associated with reduction in serum levels of total bile acid and markers in Apoptotic pathways. After IL-17A inhibitor treatment in Psoriasis patients, longitudinal studies observed a trend toward a normal distribution of the gut microbiome and modulation of apoptosis-related metabolic pathways. Results from a mouse model showed dysregulation of the skin microbiota in Psoriasis characterized by Staphylococcus colonization. Conclusion: The psoriatic gut/skin microbiota exhibits loss of community stability and pathogen enrichment. IL-17A inhibitors restore microbiota homeostasis and metabolic pathways, reduce pro-inflammatory cytokine expression, and alleviate symptoms in patients with Psoriasis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Psoríase , Animais , Camundongos , Humanos , Interleucina-17/metabolismo , Estudos Longitudinais , Estudos de Casos e Controles , RNA Ribossômico 16S/genética , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Bactérias/metabolismo , Homeostase
20.
Heliyon ; 10(6): e27893, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524531

RESUMO

Globally, age-related macular degeneration (AMD) is the leading cause of irreversible visual impairment. Up to 80% of severe vision loss is caused by AMD, which is characterized by the development of choroidal neovascularization (CNV). Uncertainty exists regarding the precise pathophysiological mechanisms of CNV. It has been suggested that the interleukin (IL) IL-6/IL-6R signaling pathway is crucial in the progression of CNV. Tocilizumab (TCZ), a monoclonal antibody, binds to soluble and membrane-bound IL-6R and competitively inhibits IL-6 downstream signaling. Previous research has demonstrated that TCZ promotes several roles related to inflammation and neovascularization. However, the effects of TCZ on CNV and the underlying mechanism are still unknown. This study found that TCZ administration decreased the area and leakage of CNV lesions in the mice model of laser-induced CNV. Additionally, results demonstrated that TCZ promotes the expression of iNOS, CCL-3, CCL-5, TNF-α and inhibits the expression of Arg-1, IL-10, YM-1 and CD206. Furthermore, TCZ treatment inhibited the signal transducer and activator of transcription (STAT) STAT3/vascular endothelial growth factor (VEGF) pathway, which was activated after CNV formation. Colivelin, a STAT3 agonist, reversed the inhibitory effects of TCZ on CNV formation and macrophage polarization. In a mouse model of laser-induced CNV, our findings demonstrated that TCZ attenuated CNV formation and inhibited the leakage of CNV lesions by regulating macrophage polarization via inhibiting the STAT3/VEGF axis. TCZ is the potential therapeutic strategy for CNV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...